| 授業の目標と概要 |
| 今まで学んできたアルゴリズムの考え方,プログラミングの技術を基に,応用的なアルゴリズムを題材として |
| その利用法や計算法を学び,プログラム等による実現力の向上を目的とし授業を進める。 |
|
| カリキュラムにおける位置づけ |
| 本科目はプログラミング言語,実践プログラミングI,II,ディジタル信号処理に関連する科目である。 |
| 特にプログラミング関係の授業内容,線形代数の授業内容をよく復習しておく。 |
|
|
|
| 1.行列と固有値・固有ベクトル |
10 |
|
|
| 本科目のガイダンス |
|
| ベクトルや行列に関する演算の復習を行う。 |
|
| 固有値や固有ベクトルの算出法等について解説する。 |
|
| 固有値・固有ベクトルを利用した手法について触れ,プログラミングを通し,その処理を実現する。 |
|
|
|
|
|
| 2.離散コサイン変換(DCT)とその応用 |
11 |
|
|
| 1次元DCTの概要を解説する。 |
|
| 1次元DCTを利用した手法について触れ,プログラミングを通し,その処理を実現する。 |
|
| 2次元DCTの概要を解説する。 |
|
| 2次元DCTを利用した関連手法について触れ,プログラミングを通し,その処理を実現する。 |
|
|
|
|
|
| 3.ウェーブレット変換とその応用 |
8 |
|
|
| ウェーブレット変換の概要を解説する。 |
|
| ウェーブレット変換を利用した関連手法について触れ,プログラミングを通し, |
|
| その処理を実現する。 |
|
|
|
|
|
| *上記関連内容について随時プログラミングを用いた実験・演習等を行う |
|
|
|
|
|
|
|
|
|
|
| 教科書 |
|
| 補助教科書 |
|
| 履修上の注意 |
|
プログラミング手法などの内容を良く復習しておくこと。 本科目は45時間の学修で1単位となる。 課題などが時間内に終わらない場合は,自主的に進め,期限内に提出する。
|
|
| 評価基準 |
|
アルゴリズムの実現を通し,基本的な計算手法を理解し,プログラミングや文書作成,ソフト開発等に関する経験を積む。
|
|
| 評価法 |
|
定期試験40%,レポートなど35%,その他提出物など25%
|
|
| 学習・教育目標 |
東京高専 |
|
JABEE |
|