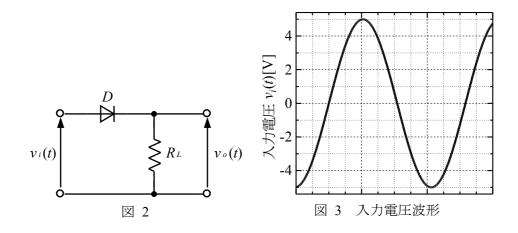
情報工学科 3 年 電子回路 中間試験 問 題

2011年11月30日実施


解答上の注意

- 問題は5ページあります.
- 求める値の有効数字の桁数は、計算に用いた値に応じて決定すること.
- 値を求める場合で、問題または解答用紙に単位の指定がない場合は、適宜単 位をつけること、
- 解答は解答用紙に行なうこと.

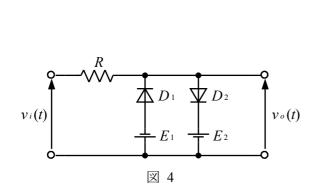
<u>l</u>	以下の各文章において,空欄に適切な語を入れよ. ただし,(H),(I),(J)については,(D)ま たは(E)のいずれかの記号で答えてもよい.
	[各 2 点× 10 = 20 点]
(1)	半導体中の電流は、負の電荷である (A) と (A) の抜けた穴である (B) によって流れる. 電流の担い手であるこれらをまとめて (C) という.
(2)	真性半導体に不純物を加えることによって, (A) を増やした不純物半導体を (D) と
(3)	いう. 真性半導体に不純物を加えることによって、 (B) を増やした不純物半導体を (E) と
(4)	いう(D) とと (E) を接合すると、その境界付近にはができるため、そのままで
(5) (6)	は電流が流れなくなる. (4)の (F) は, (A) と (B) が (G) することによってできる. 図1の回路図記号で表される半導体素子は, (D) と (E) の2種類の
	 不純物半導体から構成されている. このうち、端子1が接続されている部分には (H) が、端子2が接続されている部分には (I) が、端子3が接続されている部分には (J) が使用されている.

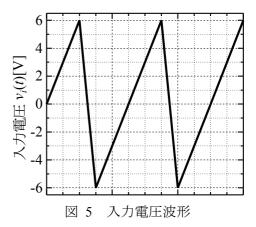
図2の回路に図3のような入力電圧 $v_i(t)$ を加えるとき、以下の各間に答えよ、ただし、ダイオードDは、順電圧が0.6[V]を超えたときに順電流が流れるものとし、順電流が流れているときの順電圧は0.6[V]であるとする.

[13 点]

(1) 表 1 は,ダイオードDの電流,入力電圧 $v_i(t)$ の範囲および出力電圧 $v_o(t)$ の関係についてまとめたものである.空欄を埋め,表を完成させよ. [各 1 点×4=4 点]

表 1 ダイオードDの電流と入力電圧 $v_i(t)$ の範囲および出力電圧 $v_o(t)$ の関係


v _i (t) の範囲	ダイオード D の電流	出力電圧 $v_o(t)$	
	流れる		
	流れない		


- (2) 表 1 を参考にして、出力電圧 $v_o(t)$ の波形を示せ、出力電圧の最大値がわかるよう、縦軸に値を書き入れること。 [6 点]
- (3) 図2の回路の名称は何か.

[3点]

図4の回路に図5のような入力電圧 $v_i(t)$ を加えるとき、以下の各間に答えよ、ただし、各ダイオードは、順電圧が0.6[V]を超えたときに順電流が流れるものとし、順電流が流れているときの順電圧は0.6[V]であるとする。また、 $E_1=2.0[V]$ 、 $E_2=1.6[V]$ であるとする。

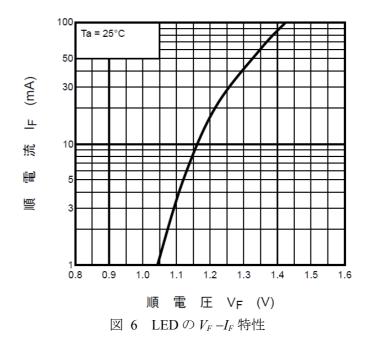
[23 点]

(1) 表 2 は、各ダイオードの電流、入力電圧 $v_i(t)$ の範囲および出力電圧 $v_o(t)$ の関係についてまとめたものである。空欄を埋め、表を完成させよ。ただし、ダイオードの電流の欄には、「流れる」または「流れない」のいずれかの語を入れること。 [各 1 点×12=12 点]

表 2 各ダイオードの電流と入力電圧 $v_i(t)$ の範囲および出力電圧 $v_o(t)$ の関係

$v_i(t)$ の範囲	ダイオードの電流		
	D_1	D_2	出力電圧 $v_o(t)$

(2) 表 2 を参考にして、出力電圧 $v_o(t)$ の波形を示せ、出力電圧の最大値および最小値がわかるよう、 縦軸に値を書き入れること。 [8 点]


(3) 図4の回路の名称は何か.

[3 点]

図 6 のような特性を持つ LED8 個を E=6.00[V]の直流電源で点灯させたい. LED 点灯時の順電流を $I_F=50.0$ [mA]とするとき、以下の各間に答えよ.

[10点]

- (1) LED を点灯させたときの順電圧 V_F の値を 0.01[V]の位まで求めよ. [3点]
- (2) 点灯回路図を示せ. ただし, 保護抵抗 R で消費される電力が最小になるようにすること. [7点]

5

図7のような回路を用いてLEDを点灯させたい。直流電源の電圧をE=7.20[V], 点灯時に おけるLEDの順電流を $I_F=10.0[mA]$, 順電圧を $V_F=2.95[V]$ とするとき,保護抵抗Rの値を求めよ。計算の過程も示すこと。

[10点]

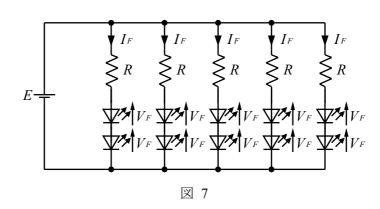


図8の回路でLEDを点灯させたい. 設計の条件を表3のとおりとするとき,以下の各間に答えよ. ただし,表3に挙げた値の有効数字の桁数は3桁とする.

[24 点]

(1)) コレクターエミッタ間の回路に成り立つ式を, 図8に示した記号を用いて 示せ.	[6点]	.]
-----	---	------	----

(2) コレクタ抵抗 R_{c} の値を求めよ. [4点]

(3) ベース電流 I_B の値を求めよ. [7点]

(4) ベース抵抗 R_B の値を求めよ. [7点]

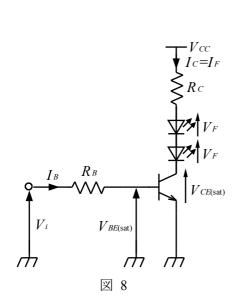
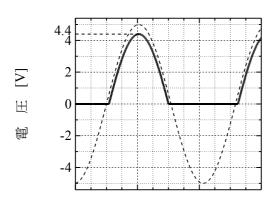


表 3 設計条件と記号の意味

記号	意味	値
V_{CC}	バイアス(電源)電圧	5.00[V]
V_i	トランジスタを ON にするとき の入力電圧	3.70[V]
$V_{BE(sat)}$	ベースーエミッタ間飽和電圧	0.700[V]
$V_{CE(sat)}$	コレクターエミッタ間飽和電圧	0.120[V]
$h_{\scriptscriptstyle FE}$	エミッタ接地直流電流増幅率	150
I_F	LED点灯時の順電流	20.0[mA]
V_F	LED点灯時の順電圧	1.90[V]
k	トランジスタをONにするとき の $\frac{I_{B}}{I_{C}/h_{FE}}$	180[%]

情報工学科3年 電子回路 中間試験 略 解

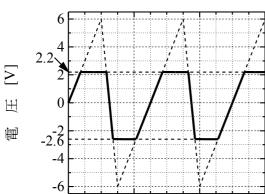

1 略

2

(1)

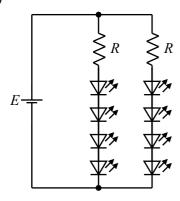
$v_i(t)$ の範囲	Dの電流	出力電圧 $v_o(t)$	
$v_i(t) > 0.6$	流れる	$v_i(t) - 0.6$	
$v_i(t) < 0.6$	流れない	0	

(2)


(3) 略

3

(1)


	ダイオードの電流		
$v_i(t)$ の範囲	D_1	D_2	出力電圧 $v_o(t)$
$v_i(t) > 2.2$	流れない	流れる	2.2
$-2.6 < v_i(t) < 2.2$	流れない	流れない	$v_i(t)$
$v_i(t) < -2.6$	流れる	流れない	-2.6

(2)

(3) 略

- 4
- (1) $V_F = 1.33[V]$
- (2)

- $\boxed{5} \quad R = 130[\Omega]$
- 6
- (1) $V_{CC} R_C I_F 2V_F V_{CE(sat)} = 0$
- (2) $R_C = 54.0[\Omega]$
- (3) $I_B = 0.240 [\text{mA}]$
- (4) $R_B = 12.5[k\Omega]$